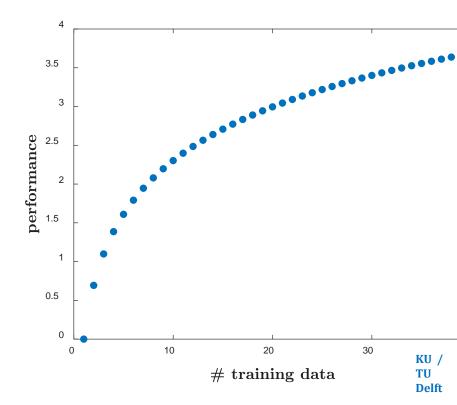
Minimizers of the Empirical Risk and Risk Monotonicity

Loog • Viering • Mey

Delft University of Technology • University of Copenhagen

Minimizers of the Empirical Risk and Risk Monotonicity

Popularly formulated, our works asks : Can one expect improved generalization performance with more training data?



Minimizers of the Empirical Risk and Risk Monotonicity

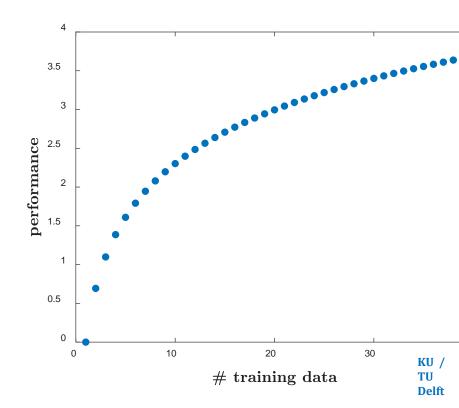
Popularly formulated, our works asks : Can one expect improved generalization performance with more training data?

> The answer? Majority of people : yes [of course!] Our paper : nope, unfortunately not

Making It a Bit More Precise...

That learners become better with more training data seems intuitive

Majority indeed takes it for granted that **learning curves** show improved performance with more data



Making It a Bit More Precise...

The learning setting we consider :

 $S_n \in \{z_1, ..., z_n\}$ sampled i.i.d. from D over a domain ZHypothesis class \mathcal{H} and loss $\ell \colon \mathcal{Z} \times \mathcal{H} \to \mathbb{R}$ Learner A maps from set of all samples S to hypothesis class \mathcal{H} $R_D(h) = \underset{z \sim D}{\mathbb{E}} \ell(z, h)$ the expected true loss

We want to study learning curves : How does $\mathbb{E}_{S_n \sim D^n}[R_D(A(S_n))]$ with increasing *n* behave?

Monotonicity

We want to study learning curves : How does $\mathbb{E}_{S_n \sim D^n}[R_D(A(S_n))]$ with increasing *n* behave?

In particular, we ask to what extent we have $\mathbb{E}_{\substack{S_{n+1} \sim D^{n+1}}} [R_D(A(S_{n+1})) - R_D(A(S_n))] \leq 0$

for all distributions D on domain \mathcal{Z}

We call this (rather basic) property **locally monotonic** in *n* That is, the learning curves does not increase

Previous Monotonicity Results

Micchelli (1979) : lower bound learning curves of Gaussian processes

Many studies within context of neural networks were done at end of 1980s, beginning of 1990s; Tishby, Haussler, and others

End of 1990s, beginning of 2000s, focus shifts from neural nets to Gaussian processes; Opper, Sollich, and others

Previous Nonmonotonicity Results

Duin (1995) shows underdetermined setting, least squares methods can behave nonmonotonic in terms of error rate a

Devroye (1996) conjectures that consistent classifiers that perform better with increasing training sizes do not exist b

Grünwald (2011) : unfortunate choice of prior gives nonmonotonicity Loog (2012) : best expected 0-1 loss can be attained for finite samples ^c

^{*a*} Directly related results have been presented by Opper (1996, 2001), Duin (2000), Krämer (2009), Belkin (2018), and Spigler (2018)

^b The conjecture is formulated following some provably nonmonotonic consistent classifiers
^c Devroye (1996) already showed that likelihood models can converge to suboptimal classifiers;
incidentally, Ben-David (2012) provides another dipping example

Our Nonmonotonicity Results

Results by Duin, Devroy, and others hinge on Fact that the model is underdetermined and/or Discrepancy between loss optimized and loss evaluated with [e.g. surrogate loss is optimized, evaluation in error rates]

Our results : nonmonotonicity can occur at all sample sizes even when evaluation loss matches loss optimized (ERM!) Moreover, we show such behavior for classification, regression, and density estimation tasks

But Let's Start Off Positively...

Let \mathcal{H} be the class of normal distributions on \mathbb{R}^d with given covariance matrix for which the mean is to be estimated Take $\mathcal{Z} \subset \mathbb{R}^d$ and as loss the negative log-likelihood

Theorem \cdot If \mathcal{Z} is bounded, the learner A is **globally monotonic** (i.e., locally monotonic for all n)

Our First Nonmonotonicity Result

Consider linear models without intercept : take $\mathcal{Z} = \mathcal{X} \times \mathcal{Y} \subset \mathbb{R}^d \times \{-1, +1\}$ and $\mathcal{H} = \mathbb{R}^d$ Let *A* be the minimizer of the empirical risk

Theorem · Assume *A* either optimizes the squared, the absolute, or the hinge loss. Assume \mathcal{Y} contains at least one element. If there exists an open ball $B_0 \subset \mathcal{X}$, then this risk minimizer is **not** locally monotonic for any $n \in \mathbb{N}$

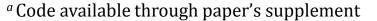
Our Second Nonmonotonicity Result

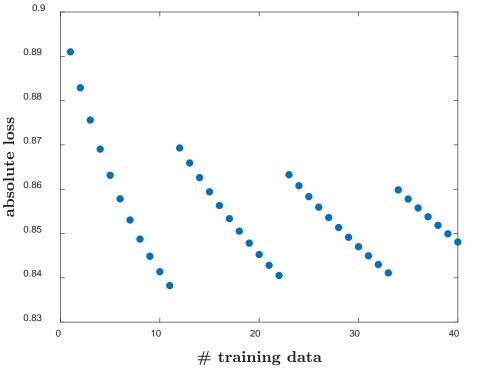
Let \mathcal{H} be the class of normal distributions on \mathbb{R} with given mean for which the variance is to be estimated With $\mathcal{Z} = \mathbb{R}$, similar to the first results, we have

Theorem · Assume *A* optimizes the negative log-likelihood. If there exists an open ball $B_0 \subset \mathbb{Z}$, then this risk minimizer is **not** locally monotonic for any $n \in \mathbb{N}$

Some Empirical Results

E.g. to illustrate the funky shapes learning curves can take on a



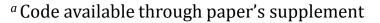


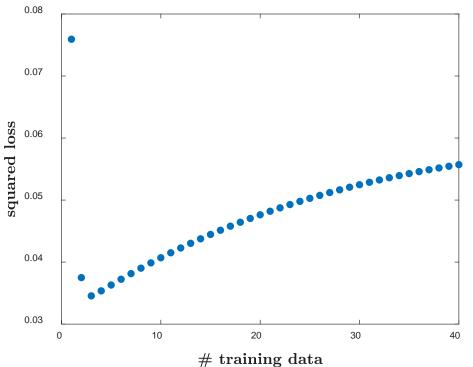
KU /

TU Delft

Some Empirical Results

E.g. to illustrate that, also with intercept, stuff goes wrong ^{*a*}





KU /

TU Delft

Conclusions

Learning curves can display unexpected behavior

Our study :

Nonmonotonic behavior possible in well-determined ERM Also indicates learning curves are not well understood

We raise open issues and possible research directions All of which should lead to further insight into such curves