1. What are Learning Curves?

Plots generalization error \(C \) versus training set size \(S \). Use them to:

1. Estimate the value of collecting more training. By extrapolating a learning curve.
2. Speed up training. If the curve doesn’t improve with \(S \) anymore, stop adding more data to save time.
3. Faster model selection. By extrapolating the curve of learners, we can rule out bad learners early [1].

2. Why study Learning Curves?

Learning curves can have surprising shapes in artificial settings, such as curves with local minima/maxima. How widespread is this in practice?

No consensus on the shape of learning curves [2]. Best modelled by a power law, exponential, …?

3. Database Highlights

We publish a large database of learning curves:

- 20 learners on 246 datasets
- Getting our data: pip install lcdb
- Precomputed error rate, F1, AUC ROC, log loss
- Provide all predictions (can compute any metric)
- Bootstrapping: 25 train / validation / test splits
- Training set sizes \(S_i = \left\lfloor 2^{(i+1)/2} \right\rfloor \), \(S = \{16, 23, 32, \ldots\} \)

4. Preliminary Findings

A. Are error rate curves monotone?

Define \(\epsilon_{\text{mon}} = \max\{0, \hat{C}(S_{i+1}) - \hat{C}(S_i)\} \)

- Empirical Cumulative Density of Compliance with Monotonicity

Averaged over the whole database most curves seem monotone according to \(\epsilon_{\text{mon}} \)

B. Local maxima in error rate?

- Only some learners peak (local maximum)
- Peaking lessens when \(S \) is larger

C. Do curves cross?

- Yes curves cross 10-20% on average

5. Discussion

Error rate: seemingly monotone, without too many local maxima, but do cross.

Extrapolation: mmf4, wbl4 perform best. Often excluded in prior studies. Other results agree with Brumen [3].

2% discarded fits: need for robust fitting!

6. Version 2.0?

- Support for pipelines (to implement feature scaling)
- Hyperparameter tuned models (we use defaults)
- Use monotonic training sets so that \(S_1 \subset S_2 \subset S_3 \ldots \)
 (currently all training sets are sampled independently)